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Abstract

with conj isti ional gaps are ubi mod-
ern statistics, computer science, statistical physics and discrete probability. While there has been success
evidencing these gaps from the failure of resmcted classes of algomhms progress towards a more tra-
ditional reduction-based h to in has been limited.
These average-case problems are each tle,d to a different natural distribution, high-dimensional struc-
ture and conjecturally hard parameter regime, leaving reducuons among them technically challenging.
Despite a flurry of recent success in ping such existing reductions have largely been
limited to inference problems with similar structure — primarily mapping among problems representable
as a sparse submatrix signal plus a noise matrix, which is similar to the common starting hardness as-
sumption of planted clique (PC).

The insight in this work is that a slight generalization of the planted clique conjecture — secret leak-
age planted clique (PC,), wherein a small amount of information about the hidden clique is revealed —
gives rise to a variety of new g hni yielding a web of reductions relating
statistical problems with very different structure. Based on generalizations of the planted clique conjec-
ture to specific forms of PC,, we deduce tight statistical-computational tradeoffs for a diverse range of
problems including robust sparse mean estimation, mixtures of sparse linear regressions, robust sparse
linear regression, tensor PCA, variants of dense k-block stochastic block models, negatively correlated
sparse PCA, irandom planted dense sut h, d in hidden partition models and a universality
principle for learning sparse mixtures. This gives the first reduction-based evidence supporting a num-
ber of statistical-computational gaps observed in the literature [Lil7, BDLS17,DKS17, CX16, HWX15,
BBHI8, FLWY18,LSLCI8,RM14, HSS15, WEAM19, ASW13, VAC17].

‘We introduce a number of new average-case reduction techniques that also reveal novel connections
to combinatorial designs based on the incidence geometry of F* and to random matrix theory. In par-
ticular, we show a convergence result between Wishart and inverse Wishart matrices that may be of
independent interest. The specific hardness conjectures for PC,, implying our statistical-computational
gaps all are in correspondence with natural graph problems such as k-partite, bipartite and hypergraph
variants of PC. Hardness in a k-partite hypergraph variant of PC is the strongest of these conjectures
and to establish all of our p lower bounds We also give evidence for our PC,
hardness conjectures from the failure of low-degree p Is and statisti query algorithms. Our
work raises a number of open problems and suggests that previous 1 to
reductions may have arisen because planted clique is not the right starting point. An expanded set of
hardness assumptions, such as PC,, may be a key first step towards a more complete theory of reductions
among statistical problems.
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Goal: Provide you with tools to read papers productively and
efficiently

Assumption: theory papers



Part 1: General Principles

Part 2: Iterative Refinement &
The Big Questions

Part 3: Reading Proofs



Part 1: General Principles



1. Papers are not novels
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Inference problems with conjectured statistical-computational gaps are ubiquitous throughout mod-
ern statistics, computer science, statistical physics and discrete probability. While there has been success
evidencing these gaps from the failure of restricted classes of algorithms, progress towards a more tra-
ditional reduction-based approach to i ity in statistical inference has been limited.
These average-case problems are each tied to a different natural distribution, high-dimensional struc-
ture and conjecturally hard parameter regime, leaving reductions among them technically challenging.
Despite a flurry of recent success in developing such techniques, existing reductions have largely been
limited to inference problems with similar structure — primarily mapping among problems representable
as a sparse submatrix signal plus a noise matrix, which is similar to the common starting hardness as-
sumption of planted clique (PC).

‘The insight in this work is that a slight generalization of the planted clique conjecture — secret leak-
age planted clique (PC,), wherein a small amount of information about the hidden clique is revealed —
gives rise to a variety of new average-case reduction techniques, yleld.mg a web of reductions relaung
statistical problems with very different structure. Based on of the planted cliqy
ture to specific forms of PC,, we deduce tight statistical-computational tradeoffs for a diverse range of
problems including robust sparse mean estimation, mixtures of sparse linear regressions, robust sparse
linear regression, tensor PCA, variants of dense k-block stochastic block models, negatively correlated
sparse PCA, semirandom planted dense subgraph, detection in hidden partition models and a universality
principle for learning sparse mixtures. This gives the first reduction-based evidence supporting a num-
ber of statistical-computational gaps observed in the literature [Li17, BDLS17, DKS17, CX16, HWX15,
BBHI8,FLWY18,LSLC18, RM14, HSS15, WEAM19, ASW13, VAC17].

‘We introduce a number of new average-case reduction techniques that also reveal novel connections
to combinatorial designs based on the incidence geometry of FZ. and to random matrix theory. In par-
ticular, we show a convergence result between Wishart and inverse Wishart matrices that may be of
independent interest. The specific hardness conjectures for PC,, implying our statistical-computational
gaps all are in correspondence with natural graph problems such as k-partite, bipartite and hypergraph
variants of PC. Hardness in a k-partite hypergraph variant of PC is the strongest of these conjectures
and sufficient to establish all of our computational lower bounds. We also give evidence for our PC,
hardness conjectures from the failure of low-degree polynomials and statistical query algorithms. Our
work raises a number of open problems and suggests that previous technical obstacles to average-case
reductions may have arisen because planted clique is not the right starting point. An expanded set of
hardness assumptions, such as PC,,, may be a key first step towards a more complete theory of reductions
among statistical problems.
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1. Papers are not novels

* Do not read papers linearly!
e Often can ignore or skip large sections

* OTOH, often need to read key sections/paragraphs/sentences many
times



2. Goals and Context

What do you want to get out of the paper?
Understand the main problem?
Understand the main result?
Potentially adopt a proof technique?

How much background do you have in the area?
None? May need to read a textbook or consult related work first
Lots? May be able to skip introduction entirely
(And may possibilities in-between)



3. Don’t read papers (@)

* Course notes

* Blog posts

e Twitter threads

 Recorded lectures from courses, conferences, seminars
* Slides

 PhD theses

 Survey articles

Are often more approachable resources
(recent result? Need details? You may be out of luck...)
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Where to look for resources

e Authors’ websites
e Simons TV (https://simons.berkeley.edu/videos)

* Other regular recorded seminars/workshop venues (TCS+, MIFODS,
BIRS,...)

e Recorded conference talks (STOC, FOCS, COLT, NeurlIPS, ICML, COLT,
ALT, ...)

* Google is your friend


https://simons.berkeley.edu/videos

Part 2: lterative Refinement & The Big
Questions



Basic workflow

Ty

Read Think

~_




The Big Questions (Roughgarden)

1. What problem is the paper trying to solve?
2. Why is the problem interesting?
3. What is the primary contribution?

4. How did they do it?

5. What are the key take-aways?



What Problem is the Paper Trying to Solve?

* Could be a well-defined mathematical/algorithmic problem:
* Show that planted clique reduces to robust sparse linear regression

e Or, could be less well-defined:
* Find a sound mathematical model for observed empirical phenomenon X



Why is the Problem Interesting?

* Progress can lead to new algorithms?
* Progress leads to improved understanding of observed phenomenon?
* Progress leads to improvements in practice?

* All research can be criticized — “glass half full” is important



What is the Primary Contribution?

* New algorithm?
e New lower bound?
e New model?

* Often captured by a theorem or a definition or a combination of a
small number thereof






So you found a paper you might want to read:

* Popped up on twitter/arxiv/etc

* Showed up list of accepted papers
* Your friend sent it to you

* Etc,,



The 5-30 Minute Assessment

Goals:

4. How did they do it?

5. What are the key take-aways?



The 5-30 Minute Assessment

1. Read the 1-2 paragraphs
Skip the abstract! Typically written for experts

2. Read the main subject headers/table of contents, look for anything
called main question or similar

3. Read the conclusions (not always useful in theory papers)

4. Look at figures (if any)



1 Introduction

Computational complexity has become a central consideration in statistical inference as focus has shifted
to high-dimensional structured problems. A primary aim of the field of mathematical statistics is to deter-
mine how much data is needed for various estimation tasks, and to analyze the performance of practical
algorithms. For a century, the focus has been on information-theoretic limits. However, the study of high-
dimensional structured estimation problems over the last two decades has revealed that the much more
relevant quantity — the amount of data needed by computationally efficient algotithms — may be significantly
higher than what is achievable without computational constraints. These statistical-computational gaps were
first observed to exist more than two decades ago [Val84, Ser99, DGROO] but only recently have emerged
as a trend ubiquitous in problems throughout modern statistics, computer science, statistical physics and
discrete probability [BB08, CJ13,JM15]. Prominent examples arise in estimating sparse vectors from linear
observations, estimating low-rank tensors, community detection, subgraph and matrix recovery problems,
random constraint satisfiability, sparse principal component analysis and robust estimation.



Question 1.1. Can statistical-computational gaps in problems with different high-dimensional structures be

related to one another through average-case reductions?

PC, conjecture

k-partite
@ Produce negative correlations A/\//\——f—hypergraph PC
with inverted Wishart detection /k—partlte PC / ®
in hidden blpartlte PC k—part

@ Dense Bernoulli rotations with K2 ¢ partition blpartlte PC
models planted
. . . subtensor
@ Dense Bernoulli rotations with K3t semirandom
community negative @
(4) Dense Bernoulli rotations with K¢ recovery sparse |mbalanced balanced
Sparse sparse  tensor
@ Dense Bernoulli rotations with design tensors imbalanced Gaussian Gaussian PCA
2-SBM mixtures mixtures
@ LR decomposition and label generation
robust unsigned
@ Symmetric 3-ary rejection kernels SLR SLR
Multi-query reduction completing tensors universality

from hypergraphs mixture of SLRs robust sparse for learning
mean estimation  sparse mixtures



After the first assessment:

* |dentify/revisit your goals
e Look for additional resources

And, if you decide to read the paper “for real”, make a cup of coffee...



Pass .'- ape
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The 2"9 pass(es) — several hours

e Read the introduction in detail
* Read “technical overview”/ “proof sketch” or similar
e Read related work section

(More on this later)

* Pick apart key theorem statements: what do they say? (
 |dentify interesting examples
* Improvement over “obvious”/”baseline” approaches
* Simplest nontrivial special cases

* Probably still ignore proofs (but maybe read proof sketches)

* Identify concepts that can be “black-boxed” so you don’t have to worry
about them right now



After the 219 Pass(es)

1. What problem is the paper trying to solve?
2. Why is the problem interesting?
3. What is the primary contribution?

4. How did they do it?

5. What are the key take-aways?



Part 3: How did they do it?

a.k.a.: reading challenging technical proofs



Principles

* Proofs are trees
* Most proofs have 1-2 key ideas: find them!

* Concepts >> details
* But, concepts can be quantitative

* Prove it for yourself — treat the paper as a series of hints

* Chekov’s gun
e Assumptions must be used! What happens when assumptions break down?

* Examples & special cases
e Simple simple simple



Expanded Workflow (in no particular order)

* Read a line of math

* Write proof on paper/whiteboard

* Discuss with/explain to friend/colleague

* Work through small example

* Consult textbooks, referenced papers, course notes,...



Words of Warning & Encouragement

* Research papers, esp. conference versions, have a lot of mistakes
* Most are typos/easily fixed! Try to fix for yourself

* Don’t get discouraged! Understanding technical details can take days,
weeks, months...even for senior researchers/area experts!

* For most technical papers, only a few people in the world understand
them at a deep level. Understanding technical paper = almost unique
superpower!



Wrapping up

* What & how you read depends on your goals
* Always know what question(s) you’re answering!
* Refine your understanding iteratively

* Reading proofs is mostly not about reading

e Good luck!!



